
J. Fluid Mech. (2007), vol. 589, pp. 479–507. c© 2007 Cambridge University Press

doi:10.1017/S0022112007007884 Printed in the United Kingdom

479

On the periodically excited plane turbulent
mixing layer, emanating from a jagged partition

E. KIT1, I. WYGNANSKI1, D. FRIEDMAN1,
O. KRIVONOSOVA2 AND D. ZHILENKO2

1Department of Fluid Mechanics and Heat Transfer, Faculty of Engineering
Tel-Aviv University, Tel-Aviv 69978, Israel

kit@eng.tau.ac.il
2Institute of Mechanics, Moscow State University, Michurinski pr., 1, Moscow, Russia

(Received 25 December 2006 and in revised form 15 June 2007)

The flow in a turbulent mixing layer resulting from two parallel different velocity
streams, that were brought together downstream of a jagged partition was investigated
experimentally. The trailing edge of the partition had a short triangular ‘chevron’
shape that could also oscillate up and down at a prescribed frequency, because it was
hinged to the stationary part of the partition to form a flap (fliperon). The results
obtained from this excitation were compared to the traditional results obtained by
oscillating a two-dimensional fliperon. Detailed measurements of the mean flow and
the coherent structures, in the periodically excited and spatially developing mixing
layer, and its random constituents were carried out using hot-wire anemometry and
stereo particle image velocimetry.

The prescribed spanwise wavelength of the chevron trailing edge generated coherent
streamwise vortices while the periodic oscillation of this fliperon locked in-phase the
large spanwise Kelvin–Helmholtz (K-H) rolls, therefore enabling the study of the inter-
action between the two. The two-dimensional periodic excitation increases the strength
of the spanwise rolls by increasing their size and their circulation, which depends on
the input amplitude and frequency. The streamwise vortices generated by the jagged
trailing edge distort and bend the primary K-H rolls. The present investigation
endeavours to study the distortions of each mode as a consequence of their mutual
interaction. Even the mean flow provides evidence for the local bulging of the large
spanwise rolls because the integral width (the momentum thickness, θ), undulates
along the span. The lateral location of the centre of the ensuing mixing layer (the
location where the mean velocity is the arithmetic average of the two streams,
y0), also suggests that these vortices are bent. Phase-locked and ensemble-averaged
measurements provide more detailed information about the bending and bulging
of the large eddies that ensue downstream of the oscillating chevron fliperon. The
experiments were carried out at low speeds, but at sufficiently high Reynolds number
to ensure naturally turbulent flow.

1. Introduction
When two parallel streams of different species or velocities merge at the end of

a flow partition, they create a mixing layer that spreads-out approximately linearly
in the direction of streaming after passing through an initial adjustment length. This
length is sensitive to the state of the boundary layers that develop over the splitter
plate (their thickness and whether they are laminar or turbulent) and to the velocity
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Figure 1. Periodically excited, plane turbulent mixing layer generated between two parallel
streams (reproduced from Oster et al. 1978).

and density ratio between the streams. When the velocity ratio is large and the
boundary layers are thin the adjustment length is short. Nevertheless, the streamwise
streaks existing in the upstream, turbulent boundary layers and in the wake created
downstream of the flow partition, introduce inflow conditions that are foreign to the
‘ideal’ mixing layer. It is always a challenge to separate the auspicious factors entering
the region of interest, from the natural perturbations in the flow that emerge from
the instabilities evolving under ideal conditions. Such may be the case with some
observations related to streamwise streaks in mixing layers.

The characteristics of the turbulent large-spanwise-structures in a plane periodically
excited mixing layer have been extensively investigated for over a quarter of a century.
These investigations proved that there is considerable order within the apparent
chaos that is synonymous with turbulence. Most of the orderly travelling structures
represent concentrations of spanwise vorticity that are associated with the Kelvin–
Helmholtz instability mechanism (e.g. Gaster, Kit & Wygnanski 1985; Cohen &
Wygnanski 1987). Therefore these structures can be enhanced and manipulated by
periodic perturbations that excite the mean flow whose width is commensurate with
the wavelength of the excitation. Even a very weak plane harmonic disturbance can
change the mean spreading rate of the flow by increasing the growth of its spanwise
rolls (Oster et al. 1978). The sole difference in figures 1(a) and 1(b), in which a mixing
layer is visualized by smoke, is the frequency of the excitation which is twice as high
in figure 1(b). It is clear that the eddy size and the corresponding width of the mean
flow are quite different in the two photographs.

The dimensionless spreading rate of a mixing layer that had been excited by a
plane wave emanating from the trailing edge of a solid partition or nozzle can be
divided into three regions. The portion of the mixing layer adjacent to the excitation
(Region I of figure 2) diverges, principally as a result of the amplification of quasi-
two-dimensional waves. Region II starts where the mixing layer ceases to grow
because it is neutrally stable to the imposed harmonic disturbances that dominate the
flow. This occurs at a Strouhal number θ+ = θfe/U ≈ 0.075 (where θ is momentum
thickness, U = (U1 + U2)/2 is the average velocity and U1 and U2 are the velocities
of the two streams and fe is the excitation frequency). The location underlying the
onset of neutral stability is thus proportional to the frequency of the excitation.
This onset is associated with the ‘roll-up’ of the excited instability wave into a
discrete vortex and if other frequencies are also present, vortex amalgamation (usually
pairing) may be observed. Wherever a single frequency dominates the flow, Region II
extends over the approximate range 1<Rf + < 2, where f + = f x/U = x/λx represents
a dimensionless distance measured in terms of the number of streamwise wavelengths
λx that it contains. Similarly, θ+ = f θ/U = θ/λx represents a dimensionless momentum
thickness θ measured relative to the streamwise wavelength. R = (U1 − U2)/(U1 +U2)
may be regarded as the ratio between the typical vorticity of a large spanwise
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Figure 2. Dimensionless spreading rate of a mixing layer subjected to periodic excitation
(reproduced from Wygnanski & Petersen 1987).

eddy, (�U/L), and the frequency of its appearance (i.e. the advection velocity Uϕ of
the eddy divided by its characteristic size Uϕ/L ∝ [U1 + U2]/L), which consequently
indicates the angle of rotation of the large spanwise vortex during the eddy period.
In the above expression �U is velocity difference between the two streams and L is
the characteristic length of the problem, streamwise wavelength λx divided by 2π is
selected as suggested by Gaster et al. (1985). The above ratio is thus representative of
the strength of the spanwise eddies. Beyond Rf + ≈ 2, the coherent Reynolds stresses
(associated with the excitation frequency) lose their relative significance and the
mixing layer continues to spread out linearly (Region III) with increasing distance
from the splitter plate.

The dominance and perseverance of the large spanwise rolls (Wygnanski et al.
1979, Browand & Ho 1983) suggests that most of the momentum transfer in Regions
I and II could be accounted for by assuming that the flow is two-dimensional. If the
remaining incoherent (turbulent) motion is not only random but it is also fine scale, it
may be represented by a simple eddy-viscosity model (Reau & Tumin 2002; Marasli,
Champagne & Wygnanski 1991) that enabled Reau & Tumin (2002) to predict the
changes in the rate of spread of the flow and the associated coherent Reynolds
stresses resulting from the excitation. It does not consider any inflow effects, such
as the coalescence of the boundary layers from both sides of the splitter plate, nor
does it consider the possible coherence of the streamwise streaks that ride on the
spanwise structures and are stretched by the strain field existing between adjacent
rolls. Shadowgraph pictures of Konrad (1976) revealed the existence of the streamwise
streaks whose spanwise spacing increases with increasing distance from the splitter
plate. This spacing seems to scale with the local width of the flow, suggesting that the
streaks are a product of a genuine instability of the mixing layer and not simply a
testimony to imperfections on the surface of the splitter plate, or possibly wall streaks
generated in its turbulent boundary layers.

There are various instability mechanisms that could generate streamwise streaks in
a plane mixing layer. They can be a product of weakly nonlinear instability (Stuart
1967), they can also be generated by a triad wave interaction between two spanwise
travelling modes and a streamwise mode (Craik 1971), or they can result from a sec-
ondary three-dimensional instability of the primary spanwise modes (Pierrehumbert &
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Widnall 1982). Numerical simulations (Riley & Metcalfe 1980; Buell & Mansour 1989)
also predict the existence of streaks that are associated with counter-rotating stream-
wise rib vortices that are stretched and strengthened in the vortex sheets (braids) that
connect neighbouring spanwise rolls. Ho & Huerre (1984) gives a more detailed discus-
sion of this phenomenon; however, the nature of the dominant mechanism responsible
for the generation of the streamwise streaks (rib vortices) and their interaction with
the spanwise eddies in the plane turbulent mixing layer is still not fully understood.

An important question concerning the development of a turbulent mixing layer is
the mechanism of its transition to small-scale three-dimensional turbulence. In the
vicinity of the splitter plate, the mixing layer forms two-dimensional Kelvin–Helmholtz
(K-H) rolls that represent the primary instability of this free shear flow which does not
vary along the span. Naturally created K-H rolls have a variety of sizes and therefore
no dominant wavenumber. One way to regulate their wavenumber is by introducing
small-amplitude two-dimensional oscillations into the flow (Gaster et al. 1985), but
such excitation, more often than not, also affects the evolution of the turbulent mixing
layer in the direction of streaming (e.g. Oster et al. 1978; Ho & Huerre 1984). Although
these two-dimensional rolls persevere over long distances (Wygnanski et al. 1979;
Browand & Troutt 1980), they are unstable, and they are susceptible to rapidly amp-
lifying three-dimensional instabilities. The development of three-dimensional motions
in a plane mixing layer was studied by Bernal & Roshko (1986) through flow visualiz-
ation in water. They suggested that the secondary streamwise vortices are simply por-
tions of a warped vortex that threads its way up and down between adjacent spanwise
vortices, thus changing its streamwise directional sign on each pass. Similar observa-
tions were made by Lasheras & Choi (1988). These investigators enhanced and regu-
lated the streamwise structures by corrugating the partition separating the two streams
or by indenting its trailing edge in a sinusoidal manner. This procedure enabled them
to control the initial spanwise wavelength of the streaks and to observe their intensific-
ation in the direction of streaming. Since they did not excite the flow periodically, they
had no control over the spanwise rolls which consisted of a fairly broad spectrum that
naturally underwent an amplification process. As a consequence, they were unable to
determine uniquely the most unstable wavelength ratio of the two structures, stating
only that it is in the range of 0.2 to 3 times the Kelvin–Helmholtz wavelength. It may
also explain the apparent initial independence in the evolution of the two types of
coherent structures. In order to encourage the interactions between them, Lacheras &
Choi resorted to creating a weak non-uniformity in the flow and concluded that the
‘streamwise streaks’ are strain-related vortex tubes because they are aligned with the
strain field and not with the free stream. Under the non-uniform flow conditions, an
interaction was observed between the rolls and the streaks. Pairing of the primary
spanwise vortices tangled further the counter-rotating longitudinal vortex streaks,
possibly leading to the generation of small-scale vorticity and enhanced mixing. Since
the frequency content of the rolls is not unique, the visual observation of pairing
might correspond to the ‘roll-up’ of a larger wave on which a finite number of K-H
rolls are riding (Wygnanski & Peterson 1985). Bell & Metha (1992) used cross-wire
probes to measure the mean streamwise component of vorticity in a mixing layer that
had regular spanwise perturbations imposed at its origin. Once again, the streamwise
vortical structures were clearly related to the spanwise perturbations imposed on the
flow.

Experimental investigations of streamwise vortices were carried out in a forced plane
mixing layer by Huang & Ho (1990), Tung & Kleis (1996) and Leboeuf & Mehta
(1996), where the flow field was acoustically excited by two frequencies: a fundamental
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and its first subharmonic. No additional spanwise forcing was applied and hot-wire
anemometry was used to conduct the measurements of the velocity and vorticity.
This subsequently resulted in the phase-locked and ensemble-averaged spanwise
and streamwise vorticity components that were computed to study the evolution of
coherent primary and secondary vortical structures. Nygaard & Glezer (1990, 1991)
were able to excite the spanwise rolls and the streamwise streaks in a time-dependent
manner in water, by embedding heating elements in the splitter plate separating the
two streams. Their method enabled an independent control of the spanwise and
streamwise wavelengths. Hot-film anemometry was used for the velocity/vorticity
measurements while a schlieren technique enabled them to carry out flow visualization.
The streamwise streaks observed had a ‘�’ shape and they appeared first near the
high-speed edge of the primary spanwise wave before it rolled up into a vortex.

There are also a number of theoretical and numerical studies pertaining to the devel-
opment of three-dimensional vortical structures in the mixing layer. The computations
consider homogeneous and stratified mixing layers. Pierrehumbert & Widnall (1982)
identified two main classes of instability in their analysis of a shear flow, modelled by
an array of Stuart vortices. The first class corresponded to localized pairing of vortex
tubes that resulted in perturbations that varied along the span. The second class
corresponded to so-called ‘translative’ instability and its most unstable mode had a
spanwise wavelength that was equal to 2/3 of the streamwise wavelength, although
the frequency band of the unstable modes was very wide. The DNS (direct numerical
simulations) of a temporally growing mixing layer performed by Metcalfe et al. (1987)
showed that spanwise instability modes lead to the formation of pairs of counter-
rotating streamwise vortices in the braids connecting adjacent spanwise rolls. To model
the development of the rib vortices (streamwise vortices in the braid region), Lin &
Corcos (1984) computed the evolution of a vortex array, which had a sinusoidal distri-
bution in a spanwise direction that was being stretched along its axis by a plane strain.

Rogers & Moser (1992) conducted numerical simulations of a three-dimensional
temporally evolving plane mixing layer, showing how the spanwise vorticity rolled
up into corrugated spanwise rolls, with streamwise rib vortices being developed in
the braid region connecting these rolls. However, under certain initial conditions,
persistent rib vortices did not develop, delaying the development of significant three-
dimensionality in the flow. A new mechanism of small-scale transition via core
dynamic instability, (CDI), which does not rely on rib vortices was studied numerically
by Schoppa, Hussain & Metcalfe (1995). They showed that in the case of a bulging
mode, which occurs when the three-dimensional perturbations generated on the
partition are antisymmetric relative to the primary rolls, a rapid high-amplitude
standing-wave oscillation of the roll’s core size occurs without the need to form
traditional ribs. It follows from the above, that the generation of different three-
dimensional coherent structures is essentially dependent on the inflow conditions
originating in the vicinity of the trailing edge of the splitter plate.

There is an increased interest in the interaction of between spanwise and streamwise
vortices in aerodynamics and in aeroacoustics. The flow behind lambda (�) wings
(e.g. the B-2 bomber) results in a mixing layer that alters the wing loading, whereas
‘chevron’ nozzles (figure 3) proved to be effective noise abating devices (E. Gutmark
2006). Thus far, personal communication the shapes of these nozzles or wing trailing
edges have been empirically established, but the need for a better understanding of
the process has emerged. There are other applications where spanwise and streamwise
vortices interact and such interaction may dominate the mean flow. For example, in
a wall jet flowing over a convex surface, there is an interaction between the K-H
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Figure 3. Chevron type nozzle in GE CF6 engine (from E. Gutmark, personal
communication 2006).

spanwise rolls and streamwise vortices that are generated by a centrifugal instability.
In this case at least, the origin of the streamwise vortices is understood, but not the
ensuing interaction with the spanwise rolls.

Although spatial evolution of three-dimensional instabilities in free shear layers has
been intensively studied, the appearance of vortex streaks and their dependence on
the type of excitation is still not well understood. In particular, whether these streaks
originate from the large spanwise rolls by a ‘translative’ instability as Pierrehumbert &
Widnall (1982) have suggested, or from rib vortices generated and enhanced in the
braid region. Further experimental study of the three-dimensional transition within the
K-H rolls or between them, including especially designed non-uniform spanwise ex-
citation of the mixing layer, is thus desirable. Attaching an oscillatory chevron-shaped
fliperon to a stationary partition, generates spanwise rolls that periodically bulge along
the span, and pairs of counter-rotating streamwise vortices whose relative intensity is
affected by the shape and size of the chevron fliperon and by the fliperon’s excursions.

The present investigation focuses on the behaviour and mutual interaction of these
vortices in order to expose their combined effect on the mean flow and turbulence
fields. A study of this interaction requires detailed three-dimensional mapping of
velocities within the K-H billows and their evolution in space and in time. Conven-
tional experimental tools can provide either high temporal resolution at a limited
number of locations or high spatial resolution at a given instant. Since hot wires were
mostly used to map the three-dimensional coherent structures in mixing layers, the
spatial resolution of the available information is limited although a fairly large number
of fixed locations were examined by cross-wires. Stereo particle image velocimetry
(SPIV) was also employed to obtain velocity patterns along the mixing layer as well
as in the crossflow plane at a given time. Periodic excitation provided a time reference
that enabled the data acquired by SPIV to be phase locked to the excitation, thus
relieving somewhat the shortcoming of its poor temporal resolution; it also provided
a phase reference for extracting information about coherent structures whenever
hot-wire anemometers were used. The experiments were carried out in the Tel Aviv
mixing-layer facility that was constructed by Oster et al. (1978) and has been almost
continuously used ever since (Gaster et al. 1985; Weisbrot & Wygnanski 1988; Zhou &
Wygnanski 2001). It was slightly modified to accommodate a chevron-type oscillating
fliperon and the optical quality of its sidewalls was improved. The respective velocities
of each of the streams forming the mixing layer was 5 and 2 m s−1.
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Figure 4. Layout of two- and three-dimensional fliperons: (a) photograph of a section of
three-dimensional fliperon, (b) schematic diagram of three-dimensional fliperon, (c) schematic
diagram of two-dimensional fliperon.

2. Experimental apparatus and measuring techniques
A detailed description of the apparatus is given by Oster & Wygnanski (1982).

The new test section was 2000 mm long with crossflow dimensions of 500 × 600 mm2

throughout. The mixing layer was generated in the test section through the merger of
two parallel streams created independently by the two cascade wind tunnels. The co-
ordinate system is defined as follows: the distance from the splitter plate in the
direction of streaming is x, the coordinate normal to the two streams forming the
mixing layer is y and the spanwise coordinate along the splitter plate is z. All
distances have been rendered dimensionless by using the respective wavelengths λx ,
λz and momentum thickness θ to normalize the streamwise x, spanwise z and the
lateral y coordinates, respectively, thus: ξ = x/λx , ζ = z/λz and η = (y − y0)/2θ .

Two fliperons were alternately used in this experiment. They were both hinged to the
trailing edge of the splitter plate and uniformly oscillated up to a maximum amplitude
of 3 mm. They were driven by two electromagnetic shakers that displaced a piano
wire to which the fliperon was attached (figure 4). The uniformity of the fliperon’s
oscillations was checked visually using stroboscopic lighting. The shaker was actuated
by a controlled sinusoidal signal, generated by Labview software through a digital
to analogue converter. One fliperon had a constant chord of 40 mm which provided
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uniform oscillations along the span while the other had a triangular ‘chevron’ shape
that was tied to a taught wire to ensure uniform amplitude of oscillations across the
span. It had a chord that varied linearly between 10 and 40 mm over a spanwise
distance of 37.5 mm, creating a spanwise wave of λz = 75 mm in length.

Three sets of periodically excited data are discussed in the present paper. They were
mostly acquired at a single frequency of excitation, fe = 20 Hz. A few experiments were
carried out at other frequencies of fe = 30 Hz and fe = 40 Hz. Forcing the fliperons to
oscillate at a single frequency of 20 Hz has a major effect on the rate of spread of the
flow. The maximum excursions of the tip of the fliperon, amplitude A, were kept con-
stant throughout each experiment. ‘A’ was 1.5 mm in the two-dimensional experiments
and was both 1.5 mm and 3 mm when the chevron-shaped fliperon was used. The larger
amplitude was chosen in order to impart a similar overall perturbation amplitude to
the flow with both types of fliperon, the chevron type requiring A ≈ 3 mm whereas the
two-dimensional type provided a similar average input at A= 1.5mm. This provided
an initial (measured at x = 50 mm) mean coherent disturbance level of normal
velocity, of approximately 0.9% of �U . To obtain this number, the phase-locked
and ensemble-averaged streamwise velocity perturbations were integrated across the
flow at various spanwise locations, they were averaged and then divided by the width
of the mixing layer and velocity difference, �U =(U1 − U2). The two merging streams
were maintained at velocities of 2 and 5 m s−1 (i.e. at R =(U1 − U2)/(U1 + U2) = 0.429),
resulting in a forced streamwise wavelength of λx =175 mm at the perturbation
frequency of 20 Hz which happened also to be the ratio between spanwise and
streamwise wavelengths λz/λx = 0.429. Hot-wire measurements were made across the
flow starting at x =50 mm from the trailing edge of the partition and terminating at
x = 1000 mm, thus encompassing about 50% of the 2m long test section.

Two components of velocity were measured simultaneously at two spanwise
locations across the mixing layer in order to establish the spanwise coherence of
the motion. One probe was located at the centre of the mixing layer whereas the
other could traverse in the z-direction. When the moving probe (probe 1) was not
traversing, it was located opposite the shortest chord of the ‘chevron’ fliperon (dubbed
as the notch) while the fixed probe (probe 2) was located opposite the largest chord
of the fliperon (dubbed as the cusp).

The instantaneous velocity component, q , was decomposed into a temporal average
quantity, Q, a phase-locked fluctuation 〈q〉 and the random residue qrand = q

′
(i.e.

q = Q + 〈q〉 + qrand which corresponds to triple decomposition, e.g. Hussain 1983). The
phase locking was related to the periodic excitation signal imparted to the fliperon.

The coherent portion of the motion may be smeared-out by jitter due to variations
in the free-stream velocity, the excitation amplitude and other random disturbances.
They may therefore be poorly represented by a phase-locked and ensemble-averaged
quantity (Zhou, Heine & Wygnanski 1996); however, the phase jitter of the dominant
structures in the present flow was quite small. The coherent Reynolds stresses obtained
from simple double decomposition of the motion and from phase-locked data, suggest
that most of the Reynolds stress in Region I is coherent and therefore could not have
a significant jitter. Consequently, only the conventional phase-locked and ensemble-
averaged results are presented for the hot-wire data. Various aspects of the coherent
motions, including phase-locked Reynolds stress, phase and amplitude distributions
of the individual components of the disturbances and coherent vorticity contours
were calculated from the measurements. Based on these results, the relation between
coherent spanwise and streamwise structures and the growth of the mixing layer was
observed.



Periodically excited plane turbulent mixing layer 487

SPIV provided data of all three velocity components of velocity. The SPIV system
contained a Nd:YAG double-pulse laser with light beams of 532 nm wavelength,
receiving optics, and two ‘Kodak’ cameras having a 1012 × 1008 pixel resolution.
A theatrical fog-machine (Antari, model Z-1200) generated particles having a mean
diameter of approximately 1–2 µm, which were used for seeding the flow. The physical
size of the measured images was 220 × 150 mm2. Most images were obtained in the
crossflow (y, z)-plane. The interrogation area varied from 24 × 24 up to 48 × 48
pixels, and was used to generate 100 × 80 velocity vector calculations employing
IDT provisional software. In most of the experiments presented, the 24 × 24 pixel
interrogation area was used. The IDT software provides a subpixel resolution of about
0.1, so the estimated accuracy of the ensemble-averaged velocity vectors is about 1%
for u, 3% for v and 5.7% for w. Images were aquired in two different modes. In
the random-phase mode, the acquisition was carried out using an internal clock.
These images were obtained in an arbitrary way relative to the controlled sinusoidal
oscillation of the fliperon, and were therefore also randomly phased relative to the
K-H structures in the mixing layer. In the phase-locked mode, measured images were
obtained with prescribed time shifts relative to the controlled excitation signal and the
K-H structures. At each phase, the measurements were repeated 400 times to provide
a large enough ensemble of raw data. After the series of images were ensemble
averaged, mean velocity vectors were obtained in the first mode of operation and the
phase-averaged velocity vectors in the second.

Constant-temperature hot-wire (HW) anemometers (AA Lab Systems) were used to
measure the u and v components of velocity throughout the flow field and provided a
direct comparison with the two-dimensional excited mixing layer. Measurements of the
third component, w, were temporarily postponed awaiting a detailed investigation of
the specific modal interaction between the two types of vortices that is planned in the
future. Two hot-wire probes were used for velocity measurements: one had two degrees
of freedom and was able to move in the x and y directions, whereas the other had three
degrees of freedom and could move in the x, y and z directions, with distance resol-
ution of 0.01 mm. The signals from the sensors that were sampled at rates of 2000 or
4000 samples s−1 per channel, were converted to velocities using a standard calibration
procedure (e.g. Weisbrot & Wygnanski 1988), and were stored for further processing.

At the first stage of the processing, the local mean velocity at each measuring
point was computed by averaging the entire record, whose duration exceeded 100
excitation periods and it was subtracted from the raw signal. Further decomposition
of each velocity component to the coherent and random parts was conducted using
the excitation signal for phase reference. The number of points so analysed at any
one of three cross (Y–Z) planes was 2091 = 51 × 41, for lateral y and spanwise z

coordinates correspondingly.

3. Results and discussion
3.1. The mean flow

The mean centre of a turbulent two-dimensional mixing layer is arbitrarily defined
by the lateral location y0 (e.g. Gaster et al. 1985). With some reservation, the values
of y0 represent the lateral locations of the centres of the large spanwise rolls and
enable us to assess their distortion or bend. The distribution of y0 is presented in
figure 5. In the absence of periodic excitation, dy0/dx =constant at all distances from
the splitter plate and is therefore represented by a straight line in figure 5(a). Plane
periodic excitation results in an earlier roll-up of the large transverse rolls and thus
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Figure 5. Normalized distribution of the mean centre location, (y0/λx), of the mixing layer.
�, fliperon notch; �, fliperon cusp.

larger initial values of dy0/dx that is followed by saturation (dy0/dx ≈ 0) associated
with the neutrally stable and decaying modes of the externally excited eddies. Since
these relationships have been extensively discussed in the past (e.g. Wygnanski &
Peterson 1985) the two-dimensional data are represented by a curve fit for the sake
of comparison only.

The initial three-dimensional perturbations generated by the stationary chevron
fliperon, resulted in the most significant bending of the spanwise rolls starting at
Rx/λx > 0.7. The bend increased monotonically until Rx/λx = 1.8 where the difference
between the location of y0 opposite the notch and the cusp in the fliperon was 0.13λx .
This distance is commensurate with the depth of the notch, but more surprising is the
perseverance of the distortion in the direction of streaming that exceeded 10λz. Little
wonder that a chevron nozzle has such a large impact on the turbulent structure of
the jet and its associated noise.

With the chevron fliperon oscillating at an amplitude of 1.5 mm, the inferred
spanwise bending became considerably weaker. It started being noticeable only at
Rx/λx > 0.7 and it increased in the direction of streaming. Nevertheless at Rx/λx = 1.8
it represented less than a third of the distortion existing in the absence of the imposed
oscillations. When the initial perturbation amplitude was increased to 3 mm, the vari-
ations of y0 with z were virtually eliminated (figure 5c), suggesting that the oscillations
of the chevron fliperon inhibit the bending of the large spanwise rolls. (dy0/dx) of this
highly perturbed three-dimensional mixing layer is not much different from the two-
dimensional unperturbed flows as long as Rx/λx < 1.4; farther downstream (dy0/dx)
is very small, reminiscent of the highly perturbed two-dimensional flow.

An integral length scale θ = θ(z) defines the local width of the flow regardless of its
dimensionality or the presence of kinks in its local mean velocity profile. It is often
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referred to as the momentum thickness, although it does not represent a deficit in
momentum as we know it from boundary-layer theory. It is defined as:

θ =

∫ ∞

−∞

U − U2

U1 − U2

[
1 − U − U2

U1 − U2

]
dy.

The increase of momentum thickness in the direction of streaming is shown in
figure 6 for the two spanwise locations: one opposite the cusp in the chevron fliperon
and the other opposite the notch. The increase of momentum thickness when the flip-
eron was stationary is shown in figure 6(a). When the plane fliperon was used, the velo-
city distributions measured by both probes were almost identical indicating again that
the flow is two-dimensional. The two-dimensional fliperon in the absence of excitation
generates a traditional two-dimensional mixing layer, whose spreading rate, (dθ/dx), is
practically constant over the entire range of measurement. The momentum thickness
for the stationary chevron fliperon, measured by the probe placed opposite its cusp
(see figure 6a) was somewhat smaller than opposite its notch. We may not attribute the
difference in θ to the effective distance from the fliperon which is larger when measured
from the notch than from the cusp, because any attempt to superpose the two curves
requires a movement in x that exceeds the depth of the notch by a factor of 3. The mix-
ing layer downstream of a passive chevron fliperon diverges initially at a higher rate
than the two-dimensional mixing layer with 0.03 < (dθ/dx) < 0.037 where the higher
value corresponds to the probe located opposite the trough (notch) in the fliperon.
At Rx/λx > 0.7, (dθ/dx) is abruptly reduced to 0.014 < (dθ/dx) < 0.018 with the
location of the higher dθ/dx switching over to the cusp in the fliperon. The passive
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chevron fliperon increases the local width of the flow throughout the domain of
measurement owing to the large initial increase in dθ/dx. Both base-flow distributions
of θ are larger downstream of the three-dimensional fliperon than of the two-
dimensional fliperon.

Oscillating the chevron fliperon at A= 1.5mm evened out the irregularities of
the thickness between the flow downstream of the notch and the cusp, provided
Rx/λx < 0.7 (figure 6b). Since in this region y0 was also independent of z (figure 5b),
it implies that this level of excitation by the chevron fliperon not only straightened
the large spanwise eddies, but also evened out their size. At Rx/λx > 0.7, the large
eddies opposite the cusp stayed closer to the high-speed stream and their local width
θ , was also smaller, when compared to the eddies that were downstream of the notch.

The active two-dimensional fliperon oscillating at A= 1.5 mm, increases the
divergence of the mixing layer in Region I (see Oster et al. 1978; Oster & Wygnanski
1982) to dθ/dx = 0.0325, (figure 6b), that is still lower than the dθ/dx provided by
the passive chevron opposite its notch. At Rx/λx = 1 (corresponding to x = 400 mm),
dθ/dx = 0 and the flow enters Region II after the neutral value of feθ/Ū = 0.075 is
reached. The almost parallel flow region terminates around Rx/λx = 1.7 whereupon
the mixing layer resumes its unexcited rate of spread. The stepwise rate of spread
represents the classical behaviour of the turbulent mixing layer that was excited by
plane periodic oscillations. A similar plateau in which dθ/dx = 0 is observed opposite
the cusp of the chevron fliperon that oscillated at an amplitude, A= 3 mm; however,
the neutral value of feθ/Uc = 0.064 is lower and it occurs at a shorter distance from the
fliperon (Rx/λx = 0.7). The chevron fliperon imparts a much smaller perturbation to
the flow downstream of the notch and consequently dθ/dx opposite the notch is much
smaller (figure 6c). While dθ/dx = 0 opposite the cusp, dθ/dx was reduced opposite
the notch although θ was much smaller than the value required for plane saturation
at this distance from the fliperon.

The dimensional momentum thickness θ0 at separation was computed by
extrapolating the θ-plots (figure 6) to the origin as suggested by Browand & Latigo
(1979). It yielded θ0 = 0.5mm resulting in λx/Rθ0 = 815. The Reynolds number based
on this hypothetical thickness, θ0, was: Re(θ0) = 90. It is high enough to allow rapid
amplification of perturbations introduced by the oscillating fliperon as was shown
by Gelfgat & Kit (2006). According to their figure 15, K-H instability develops
rapidly whenever Re(θ0) > 20. Since the flow phenomena described in this study
occur at distances where the mixing-layer width (described by local θ) is an order of
magnitude larger than it is at the origin of the flow, the detailed knowledge of the
initial θi is of little significance.

The initial evolution of the flow downstream of the chevron fliperon that oscillated
at an amplitude of only 1.5 mm was quite different from A= 3 mm. At A= 3 mm, the
local thickness of the mixing layer varied along the span while its lateral displacement
did not. At A= 1.5mm, the lateral displacement still varied along the span while the
thickness did not. We may infer from these results that A= 3 mm resulted in local
bulging of the large eddies because of the amplitude differential imparted to the flow
by the harmonic excitation of the chevron fliperon, while the large eddies associated
with the A=1.5 mm excitation were initially even along the span, but they were
dislocated in the lateral direction, i.e. they were bent.

A sketch that outlines different modes of possible three-dimensional perturbations
is drawn in figure 7 (see also Schoppa et al. 1995). When the rib vortices, developed
by strong undulations in the braid regions, approach, and wrap themselves around
the primary K-H rolls, they generate streamwise vortices in the crossflow (Y, Z)-plane.
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Three pairs of streamwise vortices appear in the cross-stream projection shown in
figure 7: the central pair reflects the bending of the primary roll while two other
pairs correspond to the rib vortices that are in the vicinity of the primary roll, one
above and the other below it (figure 7a). These patterns were observed in the present
experiment and in CFD computations of temporally developing mixing layer and
they will be discussed later.

The approximate collapse of the normalized velocity profiles (figure 8) measured
at various cross-sections beginning at x = 100 and ending at x = 1000 mm during
periodic excitation, is a reasonable indicator that the local θ remains an appropriate
parameter for normalization even in the case when the momentum thickness varies
across the span. The velocity profile is not well represented by an ‘error function’
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or by a hyperbolic tangent function (tanh) as is often assumed in the literature (i.e.
(U − U1)/(U2 − U1) = tanhη; see Michalke 1965) because (U − U1)/(U2 − U1) > 1 on
the high-velocity side of the flow. The exact reason for this excess of velocity is not
well understood, it may stem from the induction caused by the large spanwise rolls
that transport high-velocity fluid toward the low-speed side, or by the limited size of
the facility and the associated boundary-layer build-up on the solid walls.

The integration domain in the determination of θ , had to be restricted to the
location of this overshoot, as was also done by Gaster et al. (1985). Since the velocity
profiles measured in the two-dimensional case encompass Regions I to III (figure 2),
we expect to see a scatter, particularly near the outer boundaries of the mixing
layer. The scatter exceeding experimental uncertainty is associated with the finite
amplitude of the large spanwise vortices that are inclined differently in each of the
regions observed. Such scatter indeed occurs (see the insets in figure 8) and it is
most noticeable on the low-speed side of the flow whenever the plane K-H rolls are
dominant. This occurs not only when the two-dimensional fliperon oscillates, but
also when the chevron fliperon oscillates at the high amplitude of A=3 mm. When
the chevron fliperon oscillates at the lower amplitude of 1.5 mm, the scatter on the
low-velocity side is much smaller, but it is more noticeable on the high-velocity side.
Flow visualization carried out by Nygaard & Glezer (1991) suggests that rib vortices
are most noticeable on the high-velocity side of the K-H rolls because of the strain
associated with the roll-up process at the end of the linear amplification cycle.

Measurements of y0 and θ along the span were undertaken at various distances
from the trailing edge of the splitter plate, but only the data at x = 420 mm or
Rx/λx = 1.03 are presented in figure 9. The spanwise variations of both quantities
downstream of the two-dimensional fliperon are very small at all distances from the
splitter plate, proving the two-dimensionality of the mean flow. Forcing the chevron
fliperon at A= 1.5 mm results in slight undulations in θ along the span whose period
corresponds to the spanwise wavelength of the chevron and its second harmonic. This
stems from the thickening of the mixing layer opposite the cusp in the fliperon which
imparts a higher amplitude of the oscillation onto the flow. Such undulations were
also observed at closer distances to the fliperon. At A= 3 mm, a strong magnification
of θ-undulations in the spanwise direction took place opposite the cusp that imparted
the largest harmonic amplitude to the flow (with no second harmonic being present),
indicating a strong amplification of the input perturbation that resulted in a local
bulging of the primary spanwise rolls. This could also be inferred from figure 6(c).

The spanwise distribution of y0 for the cross-section located 420 mm downstream
from the partition is presented in figure 9(b). With the chevron fliperon oscillating at
A= 1.5mm, y0-undulations are observed in the spanwise direction distorting (bending)
the location of the vortex cores. The spanwise period of these undulations corresponds
to the spanwise wavelength of the chevron, suggesting that the fliperon’s oscillations
have little effect on the spanwise y0-location. Thus the maximum y0-displacement
downwards occurs opposite the notch. For A= 3 mm, the transverse undulations in
y0 are smaller owing to an obvious presence of a second harmonic in λz that also
displaces the mixing layer downward opposite a cusp. This indicates that the local
input amplitude of the excitation affects θ by increasing the diameter and presumably
the circulation of the large eddies, which resist better the bending that is imposed on
these rolls by the shape of the jagged trailing edge of the partition. It is believed that
the classical K-H rolls bend, bulge and perhaps merge under this type of excitation.
Direct numerical simulations of temporally developing mixing layers (Rogers & Moser
1992; Schoppa et al. 1995), show that bending, and bulging of the primary rolls have
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been caused by different initial perturbations that have been associated with different
instability mechanisms.

3.2. Coherent structures

Although the lateral distributions of the ucoh and vcoh components of the velocity
fluctuations in the two-dimensional forced mixing layer, are well known (Gaster
et al. 1985), they were measured again and some of them presented for the sake of
completeness. The amplitudes, phases and the cross-correlations of both components
of velocity at the fundamental frequency, obtained by a Fourier transform of their
coherent part after making a triple decomposition to mean, coherent and turbulent
parts are shown in figure 10. The typical behaviour of the forced mixing layer is
apparent. The coherent structures occupy the entire width of the mixing layer and
they increase in size at the same rate as the mean flow (it should be remembered that
the lateral coordinate on the figures is normalized by the local θ that increases in the
direction of streaming). The phase distributions and Reynolds stress distributions are
also typical of two-dimensionally forced mixing layers, indicating that kinetic energy
is extracted from the mean flow to the coherent structures in Region I (Rx/λx < 1.13
or x < 460 mm), while the energy flows in the opposite direction in Region II (i.e. the
coherent Reynolds stresses reverse their sign at Rx/λx < 1.23 as seen in figure 10c). As
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Two-dimensional fliperon, A =1.5 mm. �, vf ; �, uf .

a consequence, the total coherent energy associated with the transverse fluctuations∫
〈vf 〉dy increased rapidly for Rx/λx < 1.03 while remaining almost constant in the

range 1.03 <Rx/λx < 1.25 and decaying thereafter.
Sample distributions of total intensities (obtained by double decomposition of

the equations of motion) and their residual incoherent components (obtained by
subtracting the coherent, phase-locked and ensemble-averaged values of these velocity
fluctuations, from the total unsteady part of the motion) are compared in figure 11.
The root-mean-square (RMS) values of the normal stresses shown are normalized by
�U . At very large distances (x ≈ 1000 mm), the phase-locked coherent part of the
motion forced at 20 HZ, is so small that the incoherent and the total intensities are
equal, suggesting that the motion that has been imposed by the fliperon has dissipated.
Most of the differences between random v′ and the total velocity fluctuations, which
also include the coherent part, v′

total in Region II (Rx/λx > 1.13) occur at the centre
where (v′

total )max � (v′)max . At the beginning of Region I, (v′
total )max is only slightly

larger than (v′)max because the amplitude of the coherent motion is still small, but it
becomes large around Rx/λx ≈ 1.



Periodically excited plane turbulent mixing layer 495

0 0.1 0.2 0.3
–4

–2

0

2

4

v'/∆U

0 0.1 0.2 0.3
–4

–2

0

2

4

0 0.1 0.2 0.3
–4

–2

0

2

4

Rx/λx = 0.44
x = 180 mm

Rx/λx = 1.13
x = 460 mm

Rx/λx = 2.45
x = 1000 mm

η

Figure 11. Lateral distribution of the coherent 〈uf 〉 and 〈uf vf 〉 for the two-dimensionally
perturbed mixing layer. A = 1.5 mm, v random. �, v′; �, vtotal .

Phase uf (πrad) –�uf vf�/∆U2

0 0.1 0.2 0.3–4

–2

0η

2

4

–2 –1 0 2
–4

–2

0

2

4

–0.02 0 0.02
–4

–2

0

2

4

uf /∆U

Figure 12. Lateral distribution of normalized streamwise velocity amplitudes, phases and
〈uf vf 〉 correlations for the two-dimensionally perturbed mixing layer. A =1.5 mm, x = 420 mm,
Rx/λx = 1.03.

The spanwise variations of the lateral distributions of the fundamental velocity
amplitudes uf and the point-correlations between different velocity components
〈uf vf 〉 for the two-dimensional excited flow, were assessed at 40 spanwise locations
(adjacent measurements were separated from one another by 4 mm) at various
streamwise distances from the splitter plate. The distribution of the amplitude at
the frequency of excitation, its phase, and the dimensionless coherent Reynolds stress
indicate that the scatter among the 40 lateral distributions is small, but it increases
slightly in the direction of streaming. An example of this two-dimensionality is shown
in figure 12. The increase in the scatter along the span is associated with the direction in
which energy is being transferred between the coherent structures and the mean flow.
When the coherent structures are amplified, the scatter, even in the coherent Reynolds
stress, is negligible. The spanwise scatter in the RMS of the incoherent (random)
velocity fluctuations, determined through the triple decomposition procedure, is small
everywhere (not shown).

Forcing the three-dimensional-fliperon at A= 1.5mm results in a strong spanwise
scatter of both amplitudes and phases of the fundamental fluctuations of velocity
within the mixing layer. The lateral amplitude and phase distributions of the coherent
velocity fluctuations opposite a notch and a cusp are shown as solid and dashed lines
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correlations at three streamwise cross-sections and numerous spanwise ones for the
three-dimensionally perturbed mixing layer. Solid line, the movable probe opposite the notch;
dashed line, opposite the cusp. A = 1.5 mm.

in figure 13, respectively. Also, the lateral distributions presented in this figure use
the normalized transverse coordinate η, in which the average location of the centre
of the mixing layer, y0, was subtracted. Consequently, the average transverse bending
of the large eddies was eliminated from this figure, allowing us to concentrate more
on the streamwise displacement of the large eddies along the span. This displacement
is periodic owing to the up and down movement of the jagged trailing edge of the
splitter plate.

In the potential flow, away from the mixing layer, both amplitudes and phases
measured opposite the cusp and the notch coincide (when 2π is added to the data
on the high-speed side). However, within the core of the mixing layer, there are large
differences in the coherent intensities and their phase distributions. Most importantly,
the phase distributions congregate around two extremes that are barely affected by
increasing the distance from the fliperon: one extreme corresponding to the location
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opposite a cusp and the other opposite the notch (trough). In two-dimensional flow,
one of the extremes would have represented an amplifying disturbance and the other
a decaying one. This phase distribution is related to the inclination of the large K-H
rolls relative to the mean flow field. Whenever the large axis of these elliptical eddies
is almost orthogonal to the tangent of the velocity profile at the highest mean velocity
gradient, these eddies amplify, but when the inclination of these eddies coincides with
the inclination of this tangent, they decay. The relation between inclinations of the
large eddies and the sign of the Reynolds stress was observed by Browand & Ho (1983)
and more recently derived theoretically by Smyth & Peltier (1989). The first roll-up
resulting from a K-H instability is expected to be parallel to the trailing edge, provided
that this instability is the dominant one (Kibens et al. 1986), therefore first rolls
generated downstream of the opposing parts of the ‘chevron’ trailing edge are expected
to be inclined in the (x, z)-plane at opposite angles to the flow direction. Provided these
rolls are approximately circular to begin with, (measurements in the plane mixing
layer indicate that they are circular before they start decaying farther downstream,
Zhou & Wygnanski 2001), their cross-sections in the (x, y)-plane will be elliptical with
their large axis being inclined either backward or forward relative to the high-speed
stream. Consequently, the inclination of eddies in the (x, z)-plane contributes to their
local amplification or decay along the span and therefore results in a large spanwise
variation in intensities. Indeed, the uf fluctuations, change their amplitude (figure 13a)
and their phase (figure 13b) depending on the z location of the probe relative to the
chevron and thus resemble either amplifying or decaying K-H modes. The spanwise in-
clination of the large eddies has a major effect on the coherent Reynolds stresses which
are negative initially (at Rx/λx =0.44) downstream of a cusp (〈uf vf 〉)max ≈ 0.013 while
being negligible downstream of a notch. At larger distances (e.g. Rx/λx > 1) both pos-
itive and negative coherent Reynolds stresses are observed, depending on the precise
spanwise position of the probe (figure 13c). Positive 〈uf vf 〉max occur downstream of a
cusp on the low-velocity side of the flow (η < 0), because it is associated with a roll-up
that is triggered earlier by higher amplitudes of the coherent K-H instabilities. Up
to Rx/λx = 1, the mean rate of divergence of this mixing layer was uniform across
the span (figure 6c), but downstream of this location the rate of divergence opposite
the cusp decreased, presumably because the amplitude of the coherent motion at this
spanwise location was higher and it saturated. At Rx/λx = 1.6, the coherent Reynolds
stresses corresponding to the intermediate spanwise locations between a notch and a
cusp, are frequently more negative than at both of these spanwise extremes.

The lateral distributions of turbulent intensity and Reynolds stress that were
obtained by triple decomposition of the time-dependent signal, spread out across the
mixing layer with increasing x, as they did when the two-dimensional fliperon was
used (only the Reynolds stresses are plotted in figure 14). However, this spreading rate
is associated with the random Reynolds stresses, not the coherent ones as happened
with the two-dimensional fliperon. We may compare the correlation of the random
components 〈u′v′〉max measured at Rx/λx � 1.03 for the two fliperons used and note
how much larger this quantity is for the chevron fliperon. The turbulent quantities
are fairly uniform across the span and suggest continuous transfer of kinetic energy
from the mean motion to the random fluctuations.

Simultaneous measurements using two cross-wire probes, with one of the probes
being stationary at a fixed spanwise location while the other traverses along the span,
enabled the computation of spatial correlations between these probes. The closest
separation distance between the probes was 4 mm, it was also the step size by which
�z was increased. The maximum separation distance between the probes was 160 mm,
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and it comprised more than 2 wavelengths of the chevron. The spanwise two-point
correlations representing the coherent portion of the normal velocity fluctuations
are approximately equal to unity [Corvf vf

(0, 0, �z) ≈ 1] at larger distances from
the two-dimensional fliperon. This correlation is somewhat lower at small distances
downstream of the fliperon in the core of the mixing layer, presumably because of the
remnants of the turbulence shed from the splitter plate. The correlation measurements
were carried out at 11 lateral locations, spanning 40 mm above and below the plane
that constitutes the continuation of the splitter plate.

Strong bending and/or bulging of the primary rolls in the experiments using a three-
dimensional fliperon lead to large initial variations of Corvf vf

(0, 0, �z) as a function
of the spanwise distance. The results presented in figure 15 are for A= 1.5 mm,
but similar results were observed at the higher amplitude of A= 3 mm. Since these
measurements were carried out at a constant y location, the clearly visible footprints
of the cusps and notches of the fliperon may be due to bending of the large coherent
structures generated in their wake. A negative correlation is seen at �z/λz = 0.5
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at y = 0 and Rx/λx = 0.44 whereas at y = ±20 mm, Corvf vf
(0, 0, �z) ≈ 0.25 before

returning to approximately unity at �z/λz = 1. At y = ±20 mm, the minimum
of Corvf vf

(0, 0, �z) > 0. At Rx/λx = 1.03, the minimum of Corvf vf
(0, 0, �z) ≈ 0.6

corresponding to y = 0 and y = −20 mm while it maintained its two-dimensional
value of Corvf vf

(0, 0, �z) ≈ 1 on the high-velocity side of the flow.
The spanwise phase shifts of uf collected at y = 0 plotted in figure 16, are large

in the centre of the flow and on its low-velocity side while being negligible on the
high-velocity side of the flow. A phase shift of π occurred opposite a notch located
at z/λz = 0.5 at two distances from the fliperon, x = 180 and 650 mm corresponding
to Rx/λx = 0.44 and 1.59. It suggests that the hot-wire probe crossed the centre
of the large eddy at that location, implying that the eddy is bent. The amplitude
of the bending varies in a periodic fashion in the direction of streaming, because
the distance between the two measurement locations corresponds approximately to
Rx/λx ≈ 1, while half-way between these measurement locations (i.e. at Rx/λx = 1.03),
gradual small phase shifts were observed.

The correlation of the random component u′, Coru′u′(0, 0, �z), diminished with
increasing separation distance, �z, between the probes, but it remained exceptionally
high when the two-dimensional fliperon was used. This even held in the very interior
of the mixing layer, at y = 0, suggesting that the random oscillations are contained
within the large and regular K-H rolls (figure 17). For example at Rx/λx =1.03, the
minimum correlation coefficient of the random component was Coru′u′(0, 0, �z) ≈ 0.5
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Figure 18. Coherent �, and random �, spanwise distributions of intensities of streamwise
velocity component measured in streamwise plane coinciding with partition plane, y = 0, at two
streamwise locations. Three-dimensional fliperon, A = 3 mm. (a) x = 180mm, Rx/λx = 0.44; (b)
x = 420mm, 1.03.

and it decreased slightly with increasing distance from the trailing edge of the fliperon
(only the data collected at Rx/λx = 1.03 is shown). The same correlation coefficient
decreased rapidly downstream of the chevron fliperon oscillating at A= 1.5 mm.
Remnants of the spanwise wavelength of the chevron are detectable, generating a
slightly negative correlation around �z/λz ≈ 0.5 and 1.5 (figure 17). The footprint
of the chevron fliperon has a stronger presence when the fliperon’s amplitude was
increased to A= 3 mm. It seems that higher-amplitude oscillations that vary along
the span due to the chevron’s shape result in locally thicker K-H rolls modulating
the random motion in the mixing layer downstream.

For better understanding of the interaction between the coherent and random
eddies in the perturbed three-dimensional-mixing layer, the variations in the intensity
of both components along the span are discussed. The spanwise distributions of
streamwise intensities u′/�U are presented in figure 18 for the 3 mm chevron
fliperon oscillations. Coherent and random velocity fluctuations measured directly
downstream of the splitter plate’s trailing edge, are used for comparison. The results
are somewhat surprising because only at shorter distances, Rx/λx � 0.44, are strong
periodic variations of streamwise coherent intensities observed. Comparing the data
obtained at Rx/λx = 0.44 with that at Rx/λx =1.03, we can see the decay of the
coherent motion. At shorter distances, high-intensity coherent oscillations occur
both opposite a cusp and a trough in the chevron fliperon, doubling the spanwise
wavenumber of these intensity concentrations. Bending of the vortices in the trough
region is mostly responsible for the enhanced intensity of the coherent motion there,
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Figure 19. Energy spectra for both non-coherent velocity components measured in (a) two-
and (b) three-dimensional-perturbed mixing layer at y = 0: solid line-streamwise velocity
component; dashed line, normal velocity component. A = 1.5 mm.

while the larger amplitude imparted by the chevron fliperon in the cusp region is
still visible at Rx/λx =1.03. The random fluctuations are evenly distributed along the
span of the mixing layer regardless of the type of the initial perturbations imposed
on the flow (figure 18).

3.3. Energy spectra

Spectral densities of velocities u′ and v′ measured at y = 0 are presented in figure 19
where the streamwise component of the turbulence intensity is shown as a solid
line. The results were obtained by averaging over 400 records in order to reduce the
noise. The results corresponding to the two-dimensional oscillating fliperon tests show
that the power spectrum approaches Kolmogorov’s −5/3 slope at large distances from
the fliperon, in what might be expected to be the inertial subrange. Spectral densities
of velocity fluctuations computed when a three-dimensional fliperon was installed and
was oscillating at the lower amplitude A= 1.5 mm, possess this slope at Rx/λx = 0.44
from the partition suggesting that in this case the flow within the spanwise rolls
is fully turbulent much closer to the trailing-edge splitter plate. Thus, the mixing
transition might have occurred much earlier in the three-dimensional than in the
two-dimensional case.

The large correlation coefficient of the random velocity fluctuations measured
downstream of the two-dimensional fliperon (figure 17), indicates that the incoherent
fluctuations in the core of the large rolls are a mixture of two-dimensional and three-
dimensional turbulence, which becomes mostly three-dimensional at larger distances
from the fliperon. To stress this observation, a straight line having a slope of −3 is
also drawn in figure 19(a). This line represents a typical slope associated with two-
dimensional turbulence (e.g. Kit & Tsinober 1971). The agreement of this slope with
the data at x = 420 mm is startling. The main difference between the two-dimensional
coherent and random structures is related to their phase which is determinate
in the first case and random in the second. If the turbulence had been purely
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two-dimensional, the spanwise correlation should have been unity. However, because
it is a mixture of two- and three-dimensional turbulence, the three-dimensional effects
dominate at large distances from the fliperon (figure 19).

In the low-frequency range, (f < 50 Hz) the normal velocity fluctuations, v′, are
always smaller than the u′. This is particularly obvious in the two-dimensional case
where v′ was an order of magnitude lower in this case (figure 19).

3.4. SPIV measurements of structures

The mapping of three-dimensional coherent structures by using hot-wire anemometry
is a difficult task that can be much better performed using SPIV. In spite of its
poor temporal resolution, it has the ability to discover spatial coherent structures,
particularly streamwise ones that have to be mapped in the cross-flow plane. Phase-
locked and random phase measurements of velocity and vorticity were carried out in
two planes, streamwise ((x, y)-plane) and spanwise ((z, y)-plane), in order to study the
primary two-dimensional and the secondary three-dimensional coherent structures.

Streamwise vorticity plots measured in the (y, z)-plane at distances of 200 and
400 mm from the trailing edge of the weakly excited jagged splitter plate (i.e. oscillating
chevron fliperon) are shown in figure 20. These plots reveal the spanwise periodicity
of the streamwise vortices induced by the jagged trailing edge. The spanwise period
�z/λz = 1 corresponds to the wavelength of the three-dimensional-fliperon, but the
intensity of the vorticity observed depends on the phase and the distance at which
the data were acquired, suggesting a correlation between streamwise and spanwise
vorticity concentrations. At x = 200 mm and at a phase angle of 270◦ relative to the
forcing signal applied to the fliperon (figure 20a), three concentrations of alternating
sign of vorticity are visible to the left and to the right of each cusp. The sign of
vorticity changes across the (x, y)-plane which passes through the cusp. The upper
and the lower vortices represent the signature of rib vortices arriving from different
braid regions in the (y, z)-plane as appear in the sketch (figure 7). The central vortex
develops in the core of the primary roll and has a vorticity of a different sign from
other vortices, as follows from the sketch. The sign of a set of vortices originating
from each side of the cusp is alternating as predicted by figure 7. The y-locations of
the vortex cores are approximately y/λz = −0.22, −0.05 and 0.1 from y = 0 and they
move slightly away from the cusp as y is increased. If the phase-locked ensemble-
averaged map was taken when a core of the spanwise roll was bisected by the light
sheet, the alternating sign of vorticity in the y-direction may stem from the streamwise
vortex being rolled around the primary transverse K-H roll. The schematic diagram
shown in figures 7 explores this scenario. It shows how a spanwise vortex that is bent
along the span is being strained and rolled around neighbouring spanwise vortices
that managed to retain their predominantly spanwise vorticity. In this manner, the
spanwise vorticity of the stretched vortex is converted into streamwise vorticity with
discrete concentrations that are similar to those measured in figure 20(a) at the
phase angle of 270◦. This plot has been expanded and presented in figure 21(a)
because, as mentioned above, it provides a qualitative agreement with time-resolved
Navier–Stokes computations (Kit, Gelfgat & Nikitin 2007) in a temporally developing
mixing layer that revealed similar structures in the spanwise flow plane (figure 21b).
There is therefore little doubt that the bending of the spanwise rolls creates strong
streamwise vortices which were detected in this investigation and which affect the
level of turbulence in the mixing layer.

We can postulate that the jagged trailing edge triggers the translative instability in
the core of the primary spanwise vortex (Rogers & Moser 1992) and the observations
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reflect upon the rib vortices winding over the primary spanwise vortex. At other
phase delays (figure 20a), the light sheet illuminates the rib vortices at different
positions relative to the core or the braid and this may change the number of
vortices being observed. For example at a phase of 180◦ and Rx/λx = 0.49, only
one array of counter-rotating vortices whose cores are centred around y/λz = 0.15
can be seen. It has been suggested that at this cross-section, which is close to the
fliperon (x/λx ∼ 1), the second harmonics are strong, resulting from the nonlinear
generation of perturbations by the fliperon and its significant amplification in the
region where the thickness of the mixing layer is small. Thus the actual structure of
the primary vortices is determined by the two frequencies, the fundamental excitation
frequency and its second harmonic. An additional confirmation of this effect can be
deduced from the measurements made in the (x, y)-plane (see figure 22). It can be
readily seen that at larger distances (x/λx > 1), the primary vortices are separated
by a distance corresponding to the fundamental wavelength, λx; however, close to
the splitter plate, the vortex spacing is approximately λx/2. This may explain why
at phase angle of 90◦ (that is 180◦–λx/2–from 270◦) in figure 20(a), three couples of
vortex structures reappear. In the absence of the harmonic frequency, the light sheet
would have illuminated the braid region at this phase and would have shown only
two counter-rotating rib vortices. The appearance of one couple of counter-rotating
vortices at phase of 180◦ also reinforces the above statement since the light sheet
probably intercepts the braid region at this phase.

The intensities of phase-locked streamwise vortices decrease and their spanwise
periodicity becomes less orderly when the distance of the measurement from the
splitter plate was increased to Rx/λx =0.98 or x = 400 mm (figure 20b). It could
be attributed to the strong interaction of both kinds of coherent vortices: primary
spanwise rolls and secondary rib vortices, which lead to generation of smaller three-
dimensional structures that eventually lead to turbulence. This interaction results in
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suppression of secondary rib vortices. The hot-wire measurements confirm this trend.
Similar results have been obtained at the higher amplitude of the fliperon oscillations
of 3 mm. When a two-dimensional fliperon was used, the streamwise vortices were
weak and randomly distributed in the crossflow plane. No natural periodicity along
the span was observed.

The spanwise vorticity contours measured downstream of an oscillating chevron
fliperon at four phases relative to the fliperon’s forcing signal (figure 22) are
reminiscent of but somewhat different from similar contours obtained in a two-
dimensional forced mixing layer (e.g. Weisbrott & Wygnanski 1988). The first roll-up
occurs closer to the fliperon, (at Rx/λx =0.35) and it is immediately followed by
another vortex that is displaced in the positive y-direction. The two vortices on either
side of Rx/λx = 0.4 might represent a cross-section in a braiding process. The vortex
observed around Rx/λx = 0.8 is stretched in the y-direction and disconnected from
the other vortices in the array since the roll-up process depletes the braid region from
spanwise vorticity.

4. Concluding remarks
A static chevron fliperon enhances a translative instability that bends the large

spanwise Kelvin–Helmholz vortices and develops streamwise rib vortices. Three-
dimensional harmonic perturbations, generated by an oscillating chevron fliperon,
enhance the convective (K-H) instability and modulate the ensuing eddies along the
span. Both effects create coherent streamwise vorticity near the partition’s trailing
edge, which lead to the development of streamwise vortex tubes (rib vortices and bent
or bulging spanwise vortices) farther downstream. Two types of three-dimensional
distortions of the primary spanwise rolls were observed: bulging and bending, where
the latter takes place in both vertical (y displacement at a given time) and streamwise
directions detected by the variation in phase shift along the span. The integral
characteristics of the mean flow, θ (the momentum thickness) and y0 (the location of
the centre of the mean velocity profile) attest to the type of the prevailing vertical
distortion whereas the phase shift in the coherent motion attests to the streamwise
bending. The streamwise vortices become less coherent with increasing distance from
the fliperon. They seem to disappear in the straining field existing between adjacent
K-H rolls and they are less regular and weaker within the rolls themselves. This might
be an outcome of a strong interaction between the spanwise K-H type of rolls and
streamwise vortex tubes.

Although the data presented corresponded to a single excitation frequency of 20 Hz,
a considerable amount of data was also acquired at a frequency of 40 Hz. Since these
experiments did not reveal any different qualitative results it was decided not to
present them here.

Two-dimensional periodic excitation delays the development of three-dimensional
turbulence. Incoherent disturbances derived from measurements by using triple
decomposition, are strongly correlated in the spanwise direction, suggesting that
they are either contained within predominantly two-dimensional structures or they
are in fact two-dimensional. This is particularly true in Region I (figure 2). Only in
Region III does this correlation decrease substantially. Examination of the power
spectra lead to similar conclusions. While three-dimensional excitation by a chevron-
shaped trailing edge results in −5/3 slope of the spectrum in the inertial subrange,
two-dimensional excitation generates a slope of −3 over similar distances from
the origin of the flow. This is typical of two-dimensional turbulence, whereas the
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generation of Kolmogorov’s −5/3 slope occurs much farther downstream, where
internal instabilities generate three-dimensional turbulence.

The three-dimensional turbulence generated by a chevron splitter plate whether
active or passive should be investigated more thoroughly in the future, because it
may lead to quieter jet designs and to more efficient mixing processes, thus having a
broad engineering implication.
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